Abstract

Polarimetric Synthetic Aperture Radar (PolSAR) data is inherently characterized by speckle noise, which significantly deteriorates certain aspects of the quality of the PolSAR data processing, including the polarimetric decomposition and target interpretation. With the rapid increase in PolSAR resolution, SAR images in complex natural and artificial scenes exhibit non-homogeneous characteristics, which creates an urgent demand for high-resolution PolSAR filters. To address these issues, a new adaptive PolSAR filter based on joint similarity measure criterion (JSMC) is proposed in this paper. Firstly, a scale-adaptive filtering window is established in order to preserve the texture structure based on a multi-directional ratio edge detector. Secondly, the JSMC is proposed in order to accurately select homogeneous pixels; it describes pixel similarity based on both space distance and polarimetric distance. Thirdly, the homogeneous pixels are filtered based on statistical averaging. Finally, the airborne and spaceborne real data experiment results validate the effectiveness of our proposed method. Compared with other filters, the filter proposed in this paper provides a better outcome for PolSAR data in speckle suppression, edge texture, and the preservation of polarimetric properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call