Abstract
Polarimetric imaging systems combining machine learning is emerging as a promising tool for the support of diagnosis and intervention decision-making processes in cancer detection/staging. A present study proposes a novel method based on Mueller matrix imaging combining optical parameters and machine learning models for classifying the progression of skin cancer based on the identification of three different types of mice skin tissues: healthy, papilloma, and squamous cell carcinoma. Three different machine learning algorithms (K-Nearest Neighbors, Decision Tree, and Support Vector Machine (SVM)) are used to construct a classification model using a dataset consisting of Mueller matrix images and optical properties extracted from the tissue samples. The experimental results show that the SVM model is robust to discriminate among three classes in the training stage and achieves an accuracy of 94 % on the testing dataset. Overall, it is provided that polarimetric imaging systems and machine learning algorithms can dynamically combine for the reliable diagnosis of skin cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.