Abstract
In this article, we demonstrate the potential application of polarimetry and fluorescence spectroscopy for classifying mono and disaccharides (sugar) both qualitatively and quantitatively. A phase lock-in rotating analyzer (PLRA) polarimeter has been designed and developed for real time quantification of sugar concentration in a solution. Polarization rotation in the form of phase shift in sinusoidal photovoltages of reference and sample beams occurred when incident on the two spatially distinct photodetectors. Monosaccharide (fructose and glucose) and disaccharide (sucrose) have been quantitatively determined with sensitivities of 122.06 deg ml g−1, 272.84 deg ml g−1 and 163.41 deg ml g−1 respectively. Calibration equations have been obtained from the respective fitting functions to estimate the concentration of each individual dissolved in deionized (DI) water. In comparison to the predicted results, the absolute average errors of 1.47 %, 1.63 % and 1.71 % are calculated for the readings of sucrose, glucose and fructose, respectively. Furthermore, the performance of the PLRA polarimeter has been compared with fluorescence emission results acquired from the same set of samples. The Limit of detections (LODs) attained from both experimental setups are comparable for mono and disaccharides. A linear detection response is observed by both polarimeter and fluorescence spectrometer in a wide range 0–0.28 g/ml of sugar. These results depict that PLRA polarimeter is novel, remote, precise and cost-effective for quantitative determination of optically active ingredient in the host solution.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.