Abstract

Polar ring galaxies, where matter is in equilibrium in perpendicular orbits around spiral galaxies, are ideal objects to probe the 3D shapes of dark matter halos. The conditions to constrain the halos are that the perpendicular system does not strongly perturb the host galaxy, or that it is possible to derive back its initial shape, knowing the formation scenario of the polar ring. The formation mechanisms are reviewed: mergers, tidal accretion, or gas accretion from cosmic filaments. The Tully-Fisher diagram for polar rings reveals that the velocity in the polar plane is higher than in the host plane, which can only be explained if the dark matter is oblate and flattened along the polar plane. Only a few individual systems have been studied in details, and 3D shapes of their haloes determined by several methods. The high frequency of warps could be explained by spontaneous bending instability, if the disks are sufficiently self-gravitating, which can put constraints on the dark matter flattening.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call