Abstract

Using the density functional theory, we study the geometric and electronic structures of a GaN sheet possessing a honeycomb network. The sheet preserves the planar conformation under an equilibrium lattice constant of 3.2 Å, and has a semiconducting electronic structure with an indirect band gap of 2.28 eV. The biaxial compressive strain causes structural buckling, leading to polarization normal to the atomic layer. An external electric field normal to the layer also induces structural buckling with a height proportional to the field strength. The polarity of the buckled GaN sheet is tunable by attaching H atoms on Ga and N atoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.