Abstract
The inorganic adduct is an emergent class of infrared nonlinear optical (NLO) materials. However, although the reported NLO adducts have sufficient birefringences and significant laser-induced damage thresholds (LIDTs), they commonly suffer from weak second harmonic generation (SHG) responses. In this work, a series of polar phosphorus chalcogenide cage molecules with strong hyperpolarizabilities were theoretically screened out to enhance the SHG responses of adducts. Accordingly, (CuI)3(P4S4), (CuI)3(P4Se4), (CuBr)7(P4S3)3 and (CuBr)7(P4Se3)3 with target polar cage molecules were successfully synthesized. As expected, they exhibit enhanced SHG responses while keeping moderate birefringences and high LIDTs. Notably, (CuBr)7(P4Se3)3 possesses the largest SHG response (3.5×AGS@2.05 μm) among the known inorganic NLO adducts. Our study confirms that introducing NLO-active cage molecules into adducts is an efficient strategy for high-performance NLO materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.