Abstract

We have experimentally and theoretically studied IR-active optical phonons, which are spatially confined in the volume of semiconducting CdS nanocrystals of various shapes synthesized in a dielectric matrix (porous aluminum oxide). Within an approach admitting the mixing of all expected types of vibrations, the complete sets of phonon modes are determined for a spherical quantum dot (QD) and a cylindrical quantum wire (QW) in this matrix. Based on these results, the polarizability spectra of QDs and QWs, as well as the effective dielectric function of a composite material containing such nanoparticles, are calculated for the far-IR wavelength range. It is established that the spectrum of the dielectric function exhibits specific features in the region between the transverse and longitudinal optical phonon frequencies of the massive semiconductor material. These features explain the rather unusual structure of the IR spectra of the composite samples studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call