Abstract

Spermiogenesis entails a major biochemical and morphological restructuring of the germ cell involving replacement of the somatic histones by protamines packing the DNA into the condensed spermatid nucleus and elimination of the cytoplasm during the elongation phase. We describe H1T2, an histone H1 variant selectively and transiently expressed in male haploid germ cells during spermiogenesis. In round and elongating spermatids, H1T2 specifically localizes to a chromatin domain at the apical pole, revealing a polarity in the spermatid nucleus. Inactivation by homologous recombination shows that H1T2 is critical for spermiogenesis as male H1t2(-/-) mice have greatly reduced fertility. Analysis of spermiogenesis in H1t2 mutant mice shows delayed nuclear condensation and aberrant elongation. As a result, mutant spermatids are characterized by the presence of residual cytoplasm, acrosome detachment, and fragmented DNA. Hence, H1T2 is a protein required for proper cell restructuring and DNA condensation during the elongation phase of spermiogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.