Abstract
We investigated the structures of normal (type I) bicontinuous cubic phases in hexa-, hepta-, and octaethylene glycol dodecyl ether/water mixtures by small-angle X-ray crystallography of single-crystal domains. Reconstructed electron densities showed that the hydrophilic chains with high electron density are confined to a film centered on the surface of the Gyroid (a triply periodic minimal surface), while hydrophobic chains with low electron density are distributed within the pair of interwoven labyrinths carved out by the Gyroid. Further, the local minimum within the high electron density region, due to bulk water, coincides precisely with the Gyroid. This minimum is less pronounced in mixtures with longer ethylene glycol chains, consistent with their decreased water content. Our analysis clearly shows that the polar-nonpolar interfaces are parallel to the Gyroid surface in all mixtures. The repulsive hydration or overlapping force between the pair of facing monolayers of ethylene glycol chains on either side of the Gyroid surface is the likely origin of the parallel interfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Langmuir : the ACS journal of surfaces and colloids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.