Abstract
Informed by recent work on tensor singular value decomposition and circulant algebra matrices, this paper presents a new theoretical bridge that unifies the hypercomplex and tensor-based approaches to singular value decomposition and robust principal component analysis. We begin our work by extending the principal component pursuit to Olariu's polar n-complex numbers as well as their bicomplex counterparts. In doing so, we have derived the polar n-complex and n-bicomplex proximity operators for both the ℓ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> - and trace-norm regularizers, which can be used by proximal optimization methods such as the alternating direction method of multipliers. Experimental results on two sets of audio data show that our algebraically informed formulation outperforms tensor robust principal component analysis. We conclude with the message that an informed definition of the trace norm can bridge the gap between the hypercomplex and tensor-based approaches. Our approach can be seen as a general methodology for generating other principal component pursuit algorithms with proper algebraic structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.