Abstract

The static and dynamic shear stress of newly developed electrorheological (ER) fluids can reach more than 100 kPa and over 60 kPa at 3 kV/mm, respectively. The high yield stress of those ER fluids and its near linear dependence on the electric field are different from the conventional ER fluids and can not be explained with traditional dielectric theory. Experiment demonstrates that the polar molecules adsorbed on the particles play crucial role in those ER fluids, which can be named as polar molecule type electrorheological (PM-ER) fluids. To explain PM-ER effect a model is proposed based on the interaction of polar molecule-charge in between the particles, where the local electric field is much higher than the external one and can cause the polar molecules aligning. The main effective factors for achieving high-performance PM-ER fluids are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call