Abstract

Rotationally resonant metamaterials are leveraged to answer a longstanding question regarding the existence of transformation-invariant elastic materials and the adhoc possibility of transformation-based passive cloaking in full plane elastodynamics. Combined with tailored lattice geometries, rotational resonance is found to induce a polar and chiral behavior, that is, a behavior lacking stress and mirror symmetries, respectively. The central, and simple, idea is that a population of rotating resonators can exert a density of body torques strong enough to modify the balance of angular momentum on which hang these symmetries. The obtained polar metamaterials are used as building blocks of a cloaking device. Numerical tests show satisfactory cloaking performance under pressure and shear probing waves, further coupled through a free boundary. The work sheds new light on the phenomenon of resonance in metamaterials and should help put transformation elastodynamics on equal footing with transformation acoustics and optics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call