Abstract

We review the class of materials known as polar metals, in which polarity and metallicity coexist in the same phase. While the notion of polar metals was first invoked more than 50 years ago, their practical realization has proved challenging since the itinerant carriers required for metallicity tend to screen any polarization. Huge progress has been made in the last decade, with many mechanisms for combining polarity and metallicity proposed and the first examples, LiOsO3 and WTe2, identified experimentally. The availability of polar metallic samples has opened a new paradigm in polar metal research, with implications in the fields of topology, ferroelectricity, magnetoelectricity, spintronics, and superconductivity. Here, we review the principles and techniques that have been developed to design and engineer polar metals and describe some of their interesting properties, with a focus on the most promising directions for future work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.