Abstract

Polar magnets are promising materials for multiferroic and magnetoelectric applications in spintronic devices, owing to the coexistence of electrical polarization and magnetization and hence magnetoelectric effect. However, the design and preparation of polar magnets is a challenge due to the incompatible requirements for ferroelectricity and ferromagnetism on chemical bonding and electronic configurations. Corundum derivatives can incorporate magnetic ions into all the octahedral metal sites to enhance magnetic interactions accompanied by large spontaneous polarization if polar polymorph structures are adopted, providing an ideal platform for polar-magnet design. Considering the variable cationic combinations in A2BB′O6-type double corundum derivatives, a large number of new polar magnets are anticipated. However, so far only 14 compounds in this family have been reported, including 11 experimentally prepared and 3 theoretically predicted. The crystal structure types and physical properties of these comp...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call