Abstract
In this paper we introduce the Powell–Sabin B-spline representation of quadratic polynomials or splines in terms of their polar forms. We use this B-representation for constructing several differential or discrete quasi-interpolants which have an optimal approximation order. This new approach is simple and provides an efficient tool for describing many schemes of approximation involving values and (or) derivatives of a given function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.