Abstract

Exploring the multimedia techniques to assist scientists for their research is an interesting and meaningful topic. In this paper, we focus on the large-scale aurora image retrieval by leveraging the bag-of-visual words (BoVW) framework. To refine the unsuitable representation and improve the retrieval performance, the BoVW model is modified by embedding the polar information. The superiority of the proposed polar embedding method lies in two aspects. On the one hand, the polar meshing scheme is conducted to determine the interest points, which is more suitable for images captured by circular fisheye lens. Especially for the aurora image, the extracted polar scale-invariant feature transform (polar-SIFT) feature can also reflect the geomagnetic longitude and latitude, and thus facilitates the further data analysis. On the other hand, a binary polar deep local binary pattern (polar-DLBP) descriptor is proposed to enhance the discriminative power of visual words. Together with the 64-bit polar-SIFT code obtained via Hamming embedding, the multifeature index is performed to reduce the impact of false positive matches. Extensive experiments are conducted on the large-scale aurora image data set. The experimental result indicates that the proposed method improves the retrieval accuracy significantly with acceptable efficiency and memory cost. In addition, the effectiveness of the polar-SIFT scheme and polar-DLBP integration are separately demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.