Abstract

The uptake of L-lactate by rat small intestinal brush-border and basal-lateral plasma membrane vesicles has been studied. L-Lactate uptake by the isolated membrane vesicles is osmotically sensitive and represents predominantly transport into an intravesicular space and not binding to the membranes. The transport of L-lactate across the brush-border membrane is stimulated by sodium, whereas the transport across the basal-lateral plasma membrane is sodium-independent. In both types of membrane vesicles L-lactate is transported faster than D-lactate and L-lactate transport is inhibited by alpha-cyano-cinnamic acid. L-Lactate transport across basal-lateral membranes is inhibited by D-lactate and pyruvate and transstimulated by L-lactate and pyruvate. The polar distribution of transport system for L-lactate in the plasma membrane of rat enterocytes--a Na+/L-lactate cotransport system in the brush-border membrane and a facilitated diffusion system in the basal-lateral membrane--can explain the fact that in the intact epithelium L-lactate produced by cell metabolism is preferentially released on the serosal side and could enable the cell to perform vectorial, secondary active transport of L-lactate from the intestinal lumen to the serosal compartment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.