Abstract

POLAR is a space-borne hard X-ray polarimeter whose design has been optimized to measure the level of linear polarization of gamma-ray bursts (GRB) in the energy range of 50–500 keV. In POLAR, the GRB photons undergo Compton scattering in a target constituted by 1600 plastic scintillator bars. The light output from the whole target is read by 25 multi-anode photomultipliers (MAPMTs). The azimuthal distribution of the scattered photons inside the target provides the information on the GRB polarization. To be able to measure polarization of photons with energy as low as 50 keV, an energy threshold for each single channel of maximum 5 keV is required. This introduces strong constraints in the photon collection efficiency. To maximize it, detailed studies of the scintillator bar surfaces and the available wrapping materials have been performed using both Monte Carlo simulations and laboratory measurements. At present, a POLAR demonstration model (2 of the 25 units of the final design) is being tested in the laboratory. The engineering-qualification model will be ready in 2010.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.