Abstract

Practical implementations of secret-key generation are often based on sequential strategies, which handle reliability and secrecy in two successive steps, called reconciliation and privacy amplification. In this paper, we propose an alternative scheme based on polar coding that jointly deals with reliability and secrecy. We study a binary degraded symmetric discrete memoryless source model with uniform marginals, and assume one-way rate-limited public communication between two legitimate users. Specifically, we propose secret-key capacity-achieving polar coding schemes, in which users rely on pre-shared secret seed of negligible rate. For the model studied, we thus provide the first example of low-complexity secret-key capacity-achieving scheme that handles vector quantization, for rate-limited public communication. Furthermore, we provide examples for which no seed is required.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.