Abstract

We consider lossy source compression of a binary symmetric source using polar codes and a low-complexity successive encoding algorithm. It was recently shown by Arikan that polar codes achieve the capacity of arbitrary symmetric binary-input discrete memoryless channels under a successive decoding strategy. We show the equivalent result for lossy source compression, i.e., we show that this combination achieves the rate-distortion bound for a binary symmetric source. We further show the optimality of polar codes for various multiterminal problems including the binary Wyner-Ziv and the binary Gelfand-Pinsker problems. Our results extend to general versions of these problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.