Abstract
The underwater acoustic (UWA) channel causes large propagation delays and reduces the bit error rate (BER) of wireless communication systems. The t-distribution is the optimal distribution to perform UWA noise. In this study, polar-coded differential chaos shift keying (DCSK) and quadrature chaos shift keying (QCSK) communication with UWA noise are considered. First, we have proposed a PDF for the UWA noise channel, and based on this PDF, the theoretical BER is derived. Second, polar coding’s performance is determined to demonstrate the improvement in the BER performance compared to the uncoded UWA system by means of Monte Carlo simulations. The experimental results prove that the nearest model that is applicable to the UWA channel is a t-distribution with five and six degrees of freedom. The BER formulas of the proposed systems are derived and compared with the simulation results. The results confirm the performance improvement of the polar-coded chaotic modulation systems over uncoded systems in UWA channels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.