Abstract

The extensive existence of high-brightness ice and snow underlying surfaces in polar regions presents notable complexities for cloud detection in remote sensing imagery. To elevate the accuracy of cloud detection in polar regions, a novel polar cloud detection algorithm is proposed in this paper. Employing the MOD09 surface reflectance product, we compiled a database of monthly composite surface reflectance in the shortwave infrared bands specific to polar regions. Through the forward simulation of the correlation between the apparent reflectance and surface reflectance across diverse conditions using the 6S (Second Simulation of the Satellite Signal in the Solar Spectrum) radiative transfer model, we established a dynamic cloud detection model for the shortwave infrared channels. In contrast to a machine learning algorithm and the widely used MOD35 cloud product, the algorithm introduced in this study demonstrates enhanced congruence with the authentic cloud distribution within cloud products. It precisely distinguishes between the cloudy and clear-sky pixels, achieving rates surpassing 90% for both, while maintaining an error rate and a missing rate each under 10%. The algorithm yields positive results for cloud detection in polar regions, effectively distinguishing between ice, snow, and clouds. It provides robust support for comprehensive and long-term cloud detection efforts in polar regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call