Abstract

Abstract It is generally accepted that the ocean thermohaline circulation plays a key role in polar climate stability and rapid climate change. Recently reported analyses of the impact of anomalous freshwater outflows from the North American continent onto either the North Atlantic or Arctic Oceans demonstrate that, in either case, a clear reduction in the Atlantic meridional overturning circulation, accompanied by an increase in sea ice extent, is predicted. The results also reconcile proxy-inferred Younger Dryas Greenland temperature variations. The aim of the present work is to provide a detailed investigation of the pathways along which the signal associated with overturning circulation anomalies propagates into both the midlatitudes and the tropics and the effect such teleconnections have on the tropical ocean–atmosphere system. The authors consider both the impact of substantial slowing of the overturning circulation due to freshwater forcing of the North Atlantic as well as its recovery after the anomalous forcing has ceased. The changes in tropical climate variability are shown to manifest themselves in shifts of both the typical time scale and intensity of ENSO events in the model. Evidence is presented for mechanisms that involve both atmospheric and oceanic pathways through which such Northern Hemisphere high-latitude events are communicated into both the midlatitudes and the tropics and thereafter transformed into changes in the nature of tropical variability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.