Abstract

Pokeweed antiviral protein (PAP) isolated from Phytolacca americana is a ribosome-inactivating protein (RIP) that has RNA N-glycosidase (RNG) activity towards both eukaryotic and prokaryotic ribosomes. In contrast, karasurin-A (KRN), a RIP from Trichosanthes kirilowii var. japonica, is active only on eukaryotic ribosomes. Stepwise selection of chimera proteins between PAP and KRN indicated that the C-terminal region of PAP (residues 209–225) was critical for RNG activity toward prokaryotic ribosomes. When the region of PAP (residues 209–225) was replaced with the corresponding region of KRN the PAP chimera protein, like KRN, was active only on eukaryotic ribosomes. Furthermore, insertion of the region of PAP (residues 209–225) into the KRN chimera protein resulted not only in the detectable RNG activity toward prokaryotic ribosome, but also activity toward the eukaryotic ribosomes as well that was seven-fold higher than for the original KRN. In this study, the possibility of genetic manipulation of the activity and substrate specificity of RIPs is demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.