Abstract

The material characterisation of steel fibre reinforced concrete (SFRC) continues to be an ongoing topic of debate in the scientific community. When designing a structural element made of SFRC, its defining characteristic is its post-cracking residual tensile strength. Theoretically, a uniaxial tension test is the ideal test in gathering these parameters; however these tests are expensive in time and testing. Consequently, much effort has been placed on inferring the post-cracking properties of SFRC from simpler tests, such as a notched prism in bending. In this paper, the sectional analysis procedure of Zhang and Stang (1998) is adapted with the inclusion of the variable engagement model to describe SFRC in tension. The model is shown to accurately capture the load–deformation characteristics of the tested specimens and allows for the explicit identification of the components resisting load.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.