Abstract
We show that the direct sum of n copies of a Lie algebra is endowed with a sequence of affine Lie-Poisson brackets, which are pairwise compatible and define a multi-Hamiltonian structure; to this structure one can associate a recursion operator and a Kac-Moody algebra of Hamiltonian vector fields. If the initial Lie algebra is taken to be an associative algebra of differential operators, a suitable family of Hamiltonian vector fields reproduce either the n-th Gel'fand-Dikii hierarchy (for n finite) or Sato's hierarchy (for n = ∞). Within the same framework, it is also possible to recover a class of integro-differential hierarchies involving a finite number of fields, which generalize the Gel'fand-Dikii equations and are equivalent to Sato's hierarchy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.