Abstract

We have devised an experimentally realizable model generating twin beam states whose individual beam photon statistics are varied from thermal to Poissonian keeping the non-classical mode correlation intact. We have studied the usefulness of these states for loss measurement by considering three different estimators, comparing with the correlated thermal twin beam states generated from spontaneous parametric down conversion or four-wave mixing. We then incorporated the photon subtraction operation into the model and demonstrate their advantage in loss estimations with respect to un-subtracted states at both fixed squeezing and per photon exposure of the absorbing sample. For instance, at fixed squeezing, for two photon subtraction, up to three times advantage is found. In the latter case, albeit the advantage due to photon subtraction mostly subsides in standard regime, an unexpected result is that in some operating regimes the photon subtraction scheme can also give up to 20% advantage over the correlated Poisson beam result. We have also made a comparative study of these estimators for finding the best measurement for loss estimations. We present results for all the values of the model parameters changing the statistics of twin beam states from thermal to Poissonian.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.