Abstract
In this paper we prove that if S is a Poisson surface, i.e., a smooth algebraic surface with a Poisson structure, the Hilbert scheme of points of S has a natural Poisson structure, induced by the one of S. This generalizes previous results obtained by A. Beauville [B1] and S. Mukai [M2] in the symplectic case, i.e., when S is an abelian or K3 surface. Finally we apply our results to give some examples of integrable Hamiltonian systems naturally defined on these Hilbert schemes. In the simple case S=ℙ2 we obtain by this construction a large class of integrable systems, which includes the ones studied by P. Vanhaecke in [V1] and, more generally, in [V2].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.