Abstract

The common structure of the space of pure states ℘ of a classical or a quantum mechanical system is that of a Poisson space with a transition probability. This is a topological space equipped with a Poisson structure, as well as with a function p:℘×℘→[0,1], with certain properties. The Poisson structure is connected with the transition probabilities through unitarity (in a specific formulation intrinsic to the given context). In classical mechanics, where p(ρ,σ)=δρσ, unitarity poses no restriction on the Poisson structure. Quantum mechanics is characterized by a specific (complex Hilbert space) form of p, and by the property that the irreducible components of ℘ as a transition probability space coincide with the symplectic leaves of ℘ as a Poisson space. In conjunction, these stipulations determine the Poisson structure of quantum mechanics up to a multiplicative constant (identified with Planck's constant). Motivated by E. M. Alfsen, H. Hanche-Olsen and F. W. Shultz (Acta Math.144 (1980) 267–305) and F.W. Shultz (Commun. Math. Phys.82 (1982) 497–509), we give axioms guaranteeing that ℘ is the space of pure states of a unital C*-algebra. We give an explicit construction of this algebra from ℘.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call