Abstract

Patch-clamp recording allows investigations of the gating kinetics of single ion channels. Statistical analysis of kinetic data can enhance our understanding of channel gating at a molecular level. Experimental channel records suffer from time interval omission, i.e. failure to detect brief channel openings and closings. It is important to incorporate this phenomenon into statistical analyses of ion channel data. When time interval omission is ignored, the method of maximum likelihood can usually be used to estimate gating parameters from a single channel record. However, it is far more difficult to apply this method when time interval omission is incorporated. We present an alternative approach to parameter estimation based on Poisson sampling. A simulated homogeneous Poisson process is superimposed onto the channel record and inference is based on the numbers of points in successive open and closed sojourns, rather than on the sojourn times themselves. We describe the method for the two-state Markov model C<-->O, although it is applicable to more general models. Computer-simulated data are used to demonstrate the efficacy of the method. Modifications of the method are discussed briefly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.