Abstract

A class of spectral estimates of continuous-time stationary stochastic processes X(t) from a finite number of observations \{X(t_{n})\}^{N}_{n}=l taken at Poisson sampling instants \{t_{n}\} is considered. The asymptotic bias and covariance of the estimates are derived, and the influence of the spectral windows and the sampling rate on the performance of the estimates is discussed. The estimates are shown to be consistent under mild smoothness conditions on the spectral density. Comparison is made with a related class of spectral estimates suggested in [15] where the number of observations is {\em random}. It is shown that the periodograms of the two classes have distinct statistics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.