Abstract

Stochastic gene expression dynamics can be modelled either discretely or continuously. Previous studies have shown that the mRNA or protein number distributions of some simple discrete and continuous gene expression models are related by Gardiner's Poisson representation. Here, we systematically investigate the Poisson representation in complex stochastic gene regulatory networks. We show that when the gene of interest is unregulated, the discrete and continuous descriptions of stochastic gene expression are always related by the Poisson representation, no matter how complex the model is. This generalizes the results obtained in Dattani & Barahona (Dattani & Barahona 2017 J. R. Soc. Interface 14, 20160833 (doi:10.1098/rsif.2016.0833)). In addition, using a simple counter-example, we find that the Poisson representation in general fails to link the two descriptions when the gene is regulated. However, for a general stochastic gene regulatory network, we demonstrate that the discrete and continuous models are approximately related by the Poisson representation in the limit of large protein numbers. These theoretical results are further applied to analytically solve many complex gene expression models whose exact distributions are previously unknown.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.