Abstract
Summary We compare five methods for parameter estimation of a Poisson regression model for clustered data: (1) ordinary (naive) Poisson regression (OP), which ignores intracluster correlation, (2) Poisson regression with fixed cluster‐specific intercepts (FI), (3) a generalized estimating equations (GEE) approach with an equi‐correlation matrix, (4) an exact generalized estimating equations (EGEE) approach with an exact covariance matrix, and (5) maximum likelihood (ML). Special attention is given to the simplest case of the Poisson regression with a cluster‐specific intercept random when the asymptotic covariance matrix is obtained in closed form. We prove that methods 1–5, except GEE, produce the same estimates of slope coefficients for balanced data (an equal number of observations in each cluster and the same vectors of covariates). All five methods lead to consistent estimates of slopes but have different efficiency for unbalanced data design. It is shown that the FI approach can be derived as a limiting case of maximum likelihood when the cluster variance increases to infinity. Exact asymptotic covariance matrices are derived for each method. In terms of asymptotic efficiency, the methods split into two groups: OP & GEE and EGEE & FI & ML. Thus, contrary to the existing practice, there is no advantage in using GEE because it is substantially outperformed by EGEE and FI. In particular, EGEE does not require integration and is easy to compute with the asymptotic variances of the slope estimates close to those of the ML.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.