Abstract

We consider the Robinson–Schensted–Knuth algorithm applied to a random input and study the growth of the bottom rows of the corresponding Young diagrams. We prove a multidimensional Poisson limit theorem for the resulting Plancherel growth process. In this way we extend the result of Aldous and Diaconis to more than just one row. This result can be interpreted as convergence of the multi-line Hammersley process to its stationary distribution which is given by a collection of independent Poisson point processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.