Abstract

We consider a generic stochastic model to describe the kinetics of single-molecule enzyme inhibition reactions in which the turnover events correspond to conversion of substrate into a product by a single enzyme molecule in the presence of an inhibitor. We observe that slow fluctuations between the active and inhibited state of the enzyme or the enzyme substrate complex can induce dynamic disorder, which is manifested in the measurement of the Poisson indicator and the Fano factor as functions of substrate concentrations for different inhibition reactions. For a single enzyme molecule inhibited by the product, we derive a single-molecule Michaelis-Menten equation for the reaction rate, which shows a dependence on the substrate concentration similar to the ensemble enzymatic catalysis rate as obtained from bulk experimental results. The measurement of Fano factor is shown to be able to discriminate reactions following different inhibition mechanisms and also extract kinetic rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.