Abstract
Accurate transverse deformation measurements are required for the estimation of the Poisson function and volume ratio. In this study, pure silicone and soft composite specimens were subjected to uniaxial tension, and the digital image correlation method was used to measure longitudinal and in- and out-of-plane transverse stretches. To minimize the effects of measurement errors on parameter estimation, the measured transverse stretches were defined in terms of the longitudinal stretch using a new formulation based on Poisson's ratios and two stretch-dependent parameters. From this formulation, Poisson functions and volume ratio for soft materials under large deformations were obtained. The results showed that pure silicone can be considered isotropic and nearly incompressible under large deformations, as expected. In contrast, Poisson's ratio of silicone reinforced with extensible fabric can exceed classical bounds, including negative value (auxetic behavior). The incompressibility assumption can be employed for describing the stress-stretch curve of pure silicone, while volume ratios are required for soft composites. Data of human skin, aortic wall, and annulus fibrosus from the literature were selected and analyzed. Except for the aortic wall, which can be considered nearly incompressible, the studied soft tissues must be regarded as compressible. All tissues presented anisotropic behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Mechanical Behavior of Biomedical Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.