Abstract

ABSTRACTCauchon [5] introduced the so-called deleting derivations algorithm. This algorithm was first used in noncommutative algebra to prove catenarity in generic quantum matrices, and then to show that torus-invariant primes in these algebras are generated by quantum minors. Since then this algorithm has been used in various contexts. In particular, the matrix version makes a bridge between torus-invariant primes in generic quantum matrices, torus orbits of symplectic leaves in matrix Poisson varieties and totally non-negative cells in totally non-negative matrix varieties [12]. This led to recent progress in the study of totally non-negative matrices such as new recognition tests [18]. The aim of this article is to develop a Poisson version of the deleting derivations algorithm to study the Poisson spectra of the members of a class 𝒫 of polynomial Poisson algebras. It has recently been shown that the Poisson Dixmier–Moeglin equivalence does not hold for all polynomial Poisson algebras [2]. Our algorithm allows us to prove this equivalence for a significant class of Poisson algebras, when the base field is of characteristic zero. Finally, using our deleting derivations algorithm, we compare topologically spectra of quantum matrices with Poisson spectra of matrix Poisson varieties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.