Abstract

We study the noncommutative Poincaré duality between the Poisson homology and cohomology of unimodular Poisson algebras, and show that Kontsevich’s deformation quantization as well as Koszul duality preserve the corresponding Poincaré duality. As a corollary, the Batalin– Vilkovisky algebra structures that naturally arise in these cases are all isomorphic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.