Abstract

Consider a sequence of independent Bernoulli trials with success probability p. Let N(n; k 1, k 2) denote the number of times that k 1 failures are followed by k 2 successes among the first n Bernoulli trials. We employ the Stein-Chen method to obtain a total variation upper bound for the rate of convergence of N(n; k 1, k 2) to a suitable Poisson random variable. As a special case, the corresponding limit theorem is established. Similar results are obtained for N k 3 (n; k 1, k 2), the number of times that k 1 failures followed by k 2 successes occur k 3 times successively in n Bernoulli trials. The bounds obtained are generally sharper than, and improve upon, some of the already known results. Finally, the technique is adapted to obtain Poisson approximation results for the occurrences of the above-mentioned events under Markov-dependent trials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.