Abstract

Multivariate statistical methods have been advocated for analysis of spectral images, such as those obtained with imaging time-of-flight secondary ion mass spectrometry (TOF-SIMS). TOF-SIMS images using total secondary ion counts or secondary ion counts at individual masses often fail to reveal all salient chemical patterns on the surface. Multivariate methods simultaneously analyze peak intensities at all masses. We propose multivariate methods based on Poisson and multinomial mixture models to segment SIMS images into chemically homogeneous regions. The Poisson mixture model is derived from the assumption that secondary ion counts at any mass in a chemically homogeneous region vary according to the Poisson distribution. The multinomial model is derived as a standardized Poisson mixture model, which is analogous to standardizing the data by dividing by total secondary ion counts. The methods are adapted for contextual image segmentation, allowing for spatial correlation of neighboring pixels. The methods are applied to 52 mass units of a SIMS image with known chemical components. The spectral profile and relative prevalence for each chemical phase are obtained from estimates of model parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.