Abstract

Poisson and integrable systems are orbitally equivalent through the Nambu bracket. Namely, we show that every completely integrable system of differential equations may be expressed into the Poisson-Hamiltonian formalism by means of the Nambu-Hamilton equations of motion and a reparametrisation related by the Jacobian multiplier. The equations of motion provide a natural way for finding the Jacobian multiplier. As a consequence, we partially give an alternative proof of a recent theorem in [13]. We complete this work presenting some features associated to Hamiltonian maximally superintegrable systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.