Abstract
We investigate the bi-Hamiltonian structures associated with constrained dispersionless modified Kadomtsev–Petviashvili (KP) hierarchies which are constructed from truncations of the Lax operator of the dmKP hierarchy. After transforming their second Hamiltonian structures to those of the Gelfand–Dickey-type, we obtain the Poisson algebras of the coefficient functions of the truncated Lax operators. Then we study the conformal property and free-field realizations of these Poisson algebras. Some examples are worked out explicitly to illustrate the obtained results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.