Abstract
In most eukaryotes, telomeres are composed of tandem arrays of species-specific DNA repeats ending with a G-rich 3' overhang. In budding yeast, Cdc13 binds this overhang and recruits Ten1-Stn1 and the telomerase protein Est1 to protect (cap) and elongate the telomeres, respectively. To dissect and study the various pathways employed to cap and maintain the telomere end, we engineered telomerase to incorporate Tetrahymena telomeric repeats (G₄T₂) onto the telomeres of the budding yeast Kluyveromyces lactis. These heterologous repeats caused telomere-telomere fusions, cell cycle arrest at G2/M, and severely reduced viability--the hallmarks of telomere uncapping. Fusing Cdc13 or Est1 to universal minicircle sequence binding protein (UMSBP), a small protein that binds the single-stranded G₄T₂ repeats, rescued the cell viability and restored telomere capping, but not telomerase-mediated telomere maintenance. Surprisingly, Cdc13-UMSBP-mediated telomere capping was dependent on the homologous recombination factor Rad52, while Est1-UMSBP was not. Thus, our results distinguish between two, redundant, telomere capping pathways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.