Abstract
For nonparametric regression estimation, conventional research all focus on isotropic regression function. In this paper, a linear wavelet estimator of anisotropic regression function is constructed, the rate of convergence of this estimator is discussed in anisotropic Besov spaces. More importantly, in order to obtain an adaptive estimator, a regression estimator is proposed with scaling parameter data-driven selection rule. It turns out that our results attain the optimal convergence rate of nonparametric pointwise estimation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.