Abstract
Abstract The paper presents a new type of density topology on the real line generated by the pointwise convergence, similarly to the classical density topology which is generated by the convergence in measure. Among other things, this paper demonstrates that the set of pointwise density points of a Lebesgue measurable set does not need to be measurable and the set of pointwise density points of a set having the Baire property does not need to have the Baire property. However, the set of pointwise density points of any Borel set is Lebesgue measurable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.