Abstract
Let (X, B, µ, T) be a measure preserving system. We prove the pointwise convergence of ergodic averages along cubes of 2 k − 1 bounded and measurable functions for all k. We show that this result can be derived from estimates about bounded sequences of real numbers and apply these estimates to establish the pointwise convergence of some weighted ergodic averages and ergodic averages along cubes for not necessarily commuting measure preserving transformations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.