Abstract
Abstract This paper is devoted to studying the pointwise convergence problem and nonlinear smoothing of the generalized Zakharov–Kuznetsov equation. Firstly, we present an alternative proof of Theorem 1.5 of Linares and Ramos [Maximal function estimates and local well-posedness for the generalized Zakharov–Kuznetsov equation, SIAM J. Math. Anal. 53 (2021), 1, 914–936] and Theorem 1.8 of Linares and Ramos [The Cauchy problem for the L 2 L^{2} -critical generalized Zakharov–Kuznetsov equation in dimension 3, Comm. Partial Differential Equations 46 (2021), 9, 1601–1627]. Secondly, we give an alternative proof of Theorem 1.1 of Ribaud and Vento [A note on the Cauchy problem for the 2D generalized Zakharov–Kuznetsov equations, C. R. Math. Acad. Sci. Paris 350 (2012), 9–10, 499–503] and present the nonlinear smoothing and uniform convergence of two-dimensional generalized Zakharov–Kuznetsov equation. Thirdly, we give an alternative proof of Theorem 1.4 of Linares and Ramos [Maximal function estimates and local well-posedness for the generalized Zakharov–Kuznetsov equation, SIAM J. Math. Anal. 53 (2021), 1, 914–936]. Finally, we study the nonlinear smoothing and uniform convergence of 𝑛-dimensional generalized Zakharov–Kuznetsov equation with n ≥ 3 n\geq 3 .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.