Abstract

This article is concerned with the numerical solution of multiobjective control problems associated with nonlinear partial differential equations and more precisely the Burgers equation. For this kind of problems, we look for the Nash equilibrium, which is the solution to a noncooperative game. To compute the solution of the problem, we use a combination of finite-difference methods for the time discretization, finite-element methods for the space discretization, and a quasi-Newton BFGS algorithm for the iterative solution of the discrete control problem. Finally, we apply the above methodology to the solution of several tests problems. To be able to compare our results with existing results in the literature, we discuss first a single-objective control problem, already investigated by other authors. Finally, we discuss the multiobjective case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.