Abstract
In a different paper we constructed imaginary time Schrodinger operatorsH q=−1/2Δ+V acting onL q(ℝ n ,dx). The negative part of typical potential functionV was assumed to be inL ∞+L q for somep>max{1,n/2}. Our proofs were based on the evaluation of Kac's averages over Brownian motion paths. The present paper continues this study: using probabilistic techniques we prove pointwise upper bounds forL q-Schrodinger eigenstates and pointwise lower bounds for the corresponding groundstate. The potential functionsV are assumed to be neither smooth nor bounded below. Consequently, our results generalize Schnol's and Simon's ones. Moreover probabilistic proofs seem to be shorter and more informative than existing ones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.