Abstract

In this paper we establish a best approximation property of fully discrete Galerkin finite element solutions of second order parabolic problems on convex polygonal and polyhedral domains in the $L^\infty$ norm. The discretization method uses of continuous Lagrange finite elements in space and discontinuous Galerkin methods in time of an arbitrary order. The method of proof differs from the established fully discrete error estimate techniques and for the first time allows to obtain such results in three space dimensions. It uses elliptic results, discrete resolvent estimates in weighted norms, and the discrete maximal parabolic regularity for discontinuous Galerkin methods established by the authors in [16]. In addition, the proof does not require any relationship between spatial mesh sizes and time steps. We also establish a local best approximation property that shows a more local behavior of the error at a given point.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.